Nonparametric regression using smoothing splines

@ Smoothing is fitting a smooth curve to data in a scatterplot
@ Will focus initially on two variable problems: Y and one X
@ Will extend to more than 2 predictors at the end
@ Our model:
yi=1H(x) +ei,
where €1,¢1,...ep are independent with mean 0
@ fis some unknown smooth function
@ Stat 301, 587 etc: f has a specified form with unknown
parameters
o f could be linear or nonlinear in the parameters,
0eg. Yi=P8+p1 Xit+e
o functional form always specified

@ If f not determined by the subject matter, we may prefer to let the

data suggest a functional form

@ Why estimate f?
e can see features of the relationship between X and Y that are
obscured by error variation
e summarizes the relationship between X and Y
e provide a diagnostic for a presumed parametric form
@ Example: Diabetes data set in Hastie and Tibshirani’s book
Generalized Additive Models

@ Examine relationship between age of diagnosis of diabetes and

log of the serum C-peptide concentration

1/49

@ Here’s what happens if we fit increasing orders of polynomial, then

fit an estimated f
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Quadratic fit
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Cubic fit
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Penalized spline fit
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@ A slightly different way of thinking about Gauss-Markov Linear

models:

15

o If we assume that f(x) is linear, then f(x) = B, + B1x
@ In terms of the Gauss-Markov Linear Model y = X3 + ¢,

andﬁ:[

B4

:]

1 X

1 X2
X=

1 X
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e The linear model approximates f(x) as a linear combination of two
“basis” functions: bo(x) = 1, by(x) = x,
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f(x) = Bobo(x) + B1b1(x)

Stat 406 - part 10

Spring 2020

8/49



o If we assume that f(x) is quadratic, then f(x) = By + 81X + Box°.
@ In terms of the Gauss-Markov Linear Model y = x3 + €,

1 x x2

1 x X2 Bo
X=|. . and 8= | B34

. . . ﬂ

1 X, x2 2

@ The quadratic model tries to approximate f(x) as a linear
combination of three basis functions:
bo(x) =1, bi(x) = x, ba(x) = x*

f(x) = Bobo(X) + B1b1(x) + Boba(x)
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@ Now consider replacing by(x) = x2 with

0 if x < kq
—(x — k)t = =
Si(x) = (x—k) 7{x—k1 if X > ky
where kj is a specified real value.
@ f(x) is now approximated by Bqbo(x) + B1b1(x) + u1 S1(x), where
uy (like By amd B4) is an unknown parameter.
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@ Note that Bobo(x) + B1b1(X) + u1 S1(x) = By + B1 X + ur(x — ky)*

| Bo+Bix if x < kq
7{ﬁ0+51X+U1(X*k1) if x > ki
_ ﬁ0+ﬂ1X IfX§k1
7{ Bo— utki + (B +ur)x  ifx >k

@ This is clearly a continuous function (because it is a linear

combination of continuous functions), and it is piecewise linear.

ky

@ The function 3y + 81X + us(x — ki)™ is a simple example of a

linear spline function.
@ The value kq is known as a knot.

@ As a Gauss-Markov Linear Model, y = X3 + €,

1 x (4 — k)t
o 1 X'z (Xz—'/ﬁ)Jr

1 X (Xo— ki)t

@ We can make our linear spline function more flexible by adding

and 8 =

Bo
B

%]

more knots ki, ..., kg so that f(x) is approximated by

Bo + Bix + S5 Uisi(x) = Bo + Bix + Sy ui(x — K

© Dept. Statistics Stat 406 - part 10

Spring 2020

)+

Spring 2020

0.0 0.2 0.4 0.6

Spring 2020

-
/N

© Dept. Statistics Stat 406 - part 10

Spring 2020

13/49

14/49

15/49

16/49



o If we assume f(x) = By + 81X + Y1y uj(x — k;)*, we can write
our model as the Gauss-Markov Linear Model y = X3 + €, where

1 X1 (X1 — k1)+ (X1 — kg)+...(X1 — kk)Jr
X 1 X (e—k)t (xo—hk)T.Oe — k)"
1 Xo (Xn— ki)t (Xn—K2)Too(Xn — ki)™
and 3 = (Bg, B4, U1, Uz, ..., Ug)’
@ Estimate 8 = (8q, B4, Uy, Ug, ..., Ug)' by OLS
@ But resulting f(x) usually too “wiggly” .

@ A “wiggly” curve corresponds to values of uy, U, . .. uk far from

zero
Curve B u W up Y UP
Smoother 0.4 0.0 04 16 272
Wigglier 3.6 -6.4 48 -0.8 64.64
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Penalized least squares: Fit + smoothness

@ Usually think of fitted curve is an approximation to the true f(x).

@ Prefer a smoother (less flexible) estimate of f(x).
@ This has u; coefficients closer to 0
@ Want to find coefficients that fit the data while having small u;.
@ Statistical method: penalized least squares
o Minimizes (y — xB)'(y — xB8) + X2 Y, U
o Combines fit to data (1st term) and smoothness (2nd term)
e )2 Z;; u/? is the penalty for roughness (lack of smoothness).

o )2 is the smoothing parameter.
e controls the emphasis on fit or on smoothness

@ Details at end

Role of smoothing parameter, knots and basis
functions

@ )2 controls how wiggly the curve can be
e )2~ 0, uy's can be large = wiggly fit.
o )\ large, all u/'s — 0 = By + /1 X;
@ knots ky, ko, --- control where the curve bends
@ You choose where and how many
@ In practice, not very important.
o Better to have too many than too few.
o If too many knots, some u;’s will be 0.
@ Form of the basis functions
o linear spline function is continuous
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@ but 1st and 2nd derivatives are not; they’re undefined at the knots

@ curve “looks” smoother if continuous in 1st and 2nd derivatives
@ cubic regression splines
@ thin plate splines
@ And quite a few others
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Thin plate splines

@ Generalize easily to multiple X’s
@ The thin plate spline in concept: quadratic + spline pieces

f(x) = Bo + B1x + B2x® + > uj f(1x — xi])

i=1

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

00 02 04 06 08 10

Comparison of linear and thin-plate splines

o Linear spline
© —— Thin Plate spine

log C-peptice concentration
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Choosing a smoothing parameter

@ How much to smooth?
e i.e. what \2?
@ reminder: 0 = no smoothing (linear or quadratic in tps)
o large = close fit to data points

o Number of knots much less important
@ three approaches commonly used (depending on software)
@ Cross validation
@ Generalized cross validation
© Mixed models
@ Often determined by software
e gam() in mgcv library offers 4 choices: GCV, mixed models
(REML), and 2 others

Cross validation

@ Same concept as in other uses we've seen
o Assess how well a model predicts for new observations
e Find A2 that minimizes cv prediction error
Exclude an observation, fit spline model with A2, predict exclude
observation
Minimize sum of squared residuals
Requires a LOT of computing (each obs, many \?)
There is an approximation that requires a lot less computing (see
details at end)



Other approaches to choosing a smoothing parameter

@ Generalized Cross validation
e Same spirit as CV, different details (see end)
o Faster to compute; sometimes seems to work better
@ Linear mixed effects model
o Linear spline model is still
Yi = Bo + B1Xi + i f(Xi, k1) + u2f (X, ko) 4 -+ -+ &
@ Make this a mixed model by making the u;’s be random effects
e All u; ~ N(0,5?) and independent.
o f(X;, k+j) is still each of the J spline basis functions
e Predictions of Y; based on this model are identical to those using
penalized least squares
o Benefits of the mixed model approach
@ easy to add spline functions to lots of models
@ Very fast computation

Choosing number of knots

@ Still need to choose number of knots (k) and their locations
K,y Kk

@ Ruppert, Wand and Carroll (2003) recommend 20-40 knots
maximum, located so that there are roughly 4-5 unique x values
between each pair of knots.

@ Most software automatically chooses knots using a strategy
consistent (roughly) with this recommendation.
@ Knot choice is not usually as important as choice of smoothing
parameter
o As long as there are enough knots, a good fit can usually be
obtained.
o Penalization prevents a fit that is too rough even when there are
many knots.

Towards inference with a penalized spline

@ If we want to compare models (e.g. Ey = 5o + B1x vs Ey = f(x)),
need to know df for penalized spline fit
Can do this test because
o Ey = By + B1x is nested in Ey = f(x) fit as a linear spline
o Ey = o+ B1x + B2x? is nested in Ey = f(x) fit as a thin plate spline
@ If we use a penalized linear spline, how many parameters are we
using to estimate the mean function ?

@ |t may seem like we have k + 2 parameters 3q, B, U1, Ug, ..., U.
@ But fewer than k + 2 because of penalization.
e Actual number of parameters depends on the smoothing parameter
2.
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Model df

@ Model df has two components: the 3 model and the spline basis
functions
@ Knowing the total model df tells you how wiggly the spline part is
o linear spline: By + B1Xi, so 1 df for that part of the model
@ Remember, intercept not counted
o If model df = 1 or 1.1, spline model essentially a straight line
o If model df = 2, spline model as wiggly as a quadratic
o If model df = many more, model is very wiggly

@ diabetes data: model df = 2.39
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df model = 2, df error = 41
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Towards inference with a penalized spline

@ If we want a confidence or prediction interval around the predicted
line, need to know df for error.
@ And need to know error df and estimate error variance o2.
@ Both can be computed. Lots of details (at end)
@ Note: unlike usual models model df + error df # N-1
@ Diabetes data: error df = 39.01
o Model df + error df = 2.39 + 39.01 = 41.40 (not 42 = N-1)
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Extensions of penalized splines

@ More than one X variable
o Can fit either as a thin plate spline, f(Xi, X2)
o or as additive effects: f;(X1) + f(Xz)
o Can combine parametric and nonparametric forms:
Bo + B1 X1 + f(Xe)
@ Additive effects models sometimes called
Generalized Additive Models (GAM’s)
@ Penalized splines provide a model for Ey
@ Our discussion has only considered y; ~ N(Ey;, o?)
@ Can combine with GLM ideas, e.g.:
yi ~ Poisson(f(x;)) or Binomial(f(x;))

Details

The next slides collect mathematical and statistical details. These
include:

@ Finding the penalized LS estimates
@ Approximation to cross-validated prediction error

@ Generalized CV and mixed model approaches to choosing a
smoothing parameter

@ Model degrees of freedom
@ Estimating o2 and error df

Finding the penalized LS estimate of (3, B+, Ui, ..., Uk)’

o If we let D = diag(0,0,1,...,1) (k terms), then

K
(Y —xB)(y —xB)+ 2> u? = (y—xB)(y—xB)+ 28D3
=1
= y'y-2y'xB+8xx8+ 6D
= yy-2y'x8+8(xx+ D)3
@ Set derivatives with respect to 3 equal to 0
@ estimating equations: (x'x + \2D)B = x'y
@ solution: 3,2 = (x'x 4+ A2D)~'x’y for any fixed A2 > 0
o predicted values: J,. = xBy2 = x(X'x + X2D)~'X'y



Approximation to CV prediction error

@ There is a quick approximation to CV/(\?)

"yt

CV()3) =~ Ll

> ;{ 1= Sy
, Where Sy j; is the i diagonal element of the smoother matrix
Spe = x(X'x + X2D)~1x".

@ Remember that § = x(x'x + \>D)~'x'y = S,2y

@ OLS: y = X(X'X)"X'y = Pxy

@ The smoother matrix S, is analogous to the “hat” or projection
matrix, Py in a Gauss-Markov model.

Approximation to CV prediction error

@ Stat 500: discussed "deleted residuals” y; — y_;, where y_; is the
prediction of y; when model fit without observation i.

@ Can compute with refitting the model N times

. Y=
Yi y71717h,',"'

where h; is the i diagonal element of the "hat” matrix
H= Py =x(x'x)"x".
@ h;; = "leverage” of observation i

N 2
@ Thus, the approximation CV(\2) ~ -7, {%‘2’\2)} is
PN
analogous to the PRESS statistic Y_/_(yi — §-1)? = 314 (Y571
used in multiple regression.

2. Generalized Cross-Validation (GCV)

@ GCV is an approximation to CV obtained as follows:

n ” 2

¥i — H(x;; 23)

GCV(N\?) = s

G ;{1 — ltrace(S,e)

o Since trace(Sy2) = i1 Syz i, GCV is CV/(X?) using the average
s, Sz, instead of each specific element

@ Used same way: find A% minimizes GCV/()\?)

@ GCV is not a generalization of CV

@ Originally proposed because faster to compute

@ In some situations, seems to work better than CV, see Wahba, G.
(1990). Spline Models for Observational Data for details

@ And in very complicated situations, cannot compute H but can
estimate trace(H), so can’t use CV but can use GCV.

3. The Linear Mixed Effects Model Approach

@ Recall that for our linear spline approach, we assume the model
Yi =B+ B1xi+ Z}; ui(xi — k)t +eifori=1,..,n; where
1, ., n KE (0,02)

@ Suppose we add the following assumptions: uy, ..., Ux e N(0,02)
independent of e, ..., &, "% N(0,02).(02 = 02)

@ Then we may write our model as y = x3 + Zu + €, where

X4 (a—k)t oo (a -kt

X X.z 5= { go ]Z: (X2 *./(1)+ e (ke *_kk)+
: 1 : :

1 X (Xn— ki)™ . . . (Xn—ke)T



Mixed effects model

)z t €1

Yo uz €2
y = 3 u= 3 € = .

Yn Uk en

BRIk

@ This is a linear mixed effects model!

Mixed effects model

@ It can be shown that the BLUP of X3 + Zu is equal to
w(w'w + %)*1 w'y where w = [x, .
@ Thus, the BLUP of X3 + Zu is equal to
S,z ¥ = (Fitted values of linear spline smoother for N2 = Z—%))
2

@ Thus, we can use either ML or REML to estimate o2 and o2.
(Denote estimates by 42 and 52.)
@ Then we can estimate 3 by

Bs = (¥£ ' x)~'x'£y and predict u by
oy = GZ'E'(y — xBg) = 632'S ™ (y — xB;) where

¥ =6227'+ 521

@ The resulting coefficients [ g
3

obtained using penalized least squares with smoothing parameter
2_ 82

] will be equal to the estimate

A
© Dept. Statistics
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@ However, uy, Us, ..., Uk are not completely free parameters
because of penalization.

@ The effective number of parameters is lower than k+2 and
depends on the value of the smoothing parameter \2.

@ Recall that our estimates of 3g, 81, u1, Ug, ..., Ux Minimize
S (i = Bo = Bixi — Yoy (% — k)P + A2 0

@ A larger A2 means less freedom to choose values for u, ..., uy for
from 0.

@ Thus, the number of effective parameters should decrease as \?
increases.

@ In the Gauss-Markov framework with no penalization, the number
of free parameters used to estimate the mean of y(x03) is
rank(x) = rank(Px) = trace(Px)
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Model df

@ For a smoother, the smoother matrix S plays the role of Px.

@ For penalized linear splines, the smoother matrix is
Sye = x(x'x + \2D)~'x’ where

1 X1 (X1 — k1)+...(X1 — kk)+
1 X (e—k)t..(e— k)"

1 Xp (Xn—FKi)To(Xn — k)T

@ Thus, we define the effective number of parameter (or the degrees
of freedom) used when estimating f(x) to be
tr(Sye) = trix(x'x + X2D)~"x'] = tr[(x'x + \2D)~'x'x]



@ Recall that our basic model is y; = f(x;) +€; (i=1,...,n) where
€1,..;€n ,’,Vd (0 02)'
@ How should we estimate o2 ?
n _Fx 2 12
@ A natural estimator would be MSE = Z’:‘{dyf’ﬂ
ERROR
@ dfepror is usually defined to be n — 2tr(Syz) + tr(S)2 S,)-
@ To see where this comes from, recall that for w random and A
fixed E(w Aw) = E(w)' AE(w) + tr(AVar(w))
f(x1) F(x1; A2)
f(x: . F(xo; N2
Let f = (,2) and fy 2= ( 2_ ) =S¥
f(xn) (X A2)
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Then, EIS-7, {3~ 7(x: 32)} |

= Ely-f(y-1]

= Ellly - #IP1 = Elll(/ - Sx)ylP]

= E[y/(I-52)(I-Se)y

= (1= 8e) (1= S)f + (I - Spo)' (I = Sye)o”]
= [|(I = S)fl|? + ?tr[l — Sho — Sye + SieShel

= ||f — Syf||? + o?[tr(/) — 2tr(Sye) + tr(Sie She)l
=~ az[n — 2tr(Sy2) + tr(S’AzSXz)]

Thus, if we define
dferror = N — 2tr(Sy2) + tr(S}2 Sye), E(MSE) ~ o?

The Standard Error of 7(x; 02):

F(x:A2) = By + Byx + X jy Uj(x — ky)*
Bo
By

=1, (X — K)oy (X — k)] 1

.

s
=[1,x,(x — k)", (X — k) TI(X'x + A2D) "Xy = )2y

If A2 and the knots, k;, are fixed and not chosen as a function of
the data, C is just a fixed (nonrandom) vector.

Thus, Var[f(x; \2)] = Var(S,2'y) = Sy2'021Sy2 = 025,2'S):

It follows that the standard error for ?(x; M2 is

SE[f(x; A2)] = /MSE Sy.'S,2

If A2 and/or the knots are selected based on the data (as is usually

the case), /MSE S,2’S,: is still used as an approximate
standard error.

However, that approximate standard error may be smaller than it
should be because it does not account for variation in the S,z
vector itself

Ruppert, Wand, and Carroll (2003) suggest other strategies that
use the linear mixed effects model framework.

Calculate pointwise 1 — a confidence intervals for ?(x,-) by
t—a/2,dre\/ Var(f(x; 2)],

where dfe is the dfegror defined a few pages ago



Linear spline fit with 95% pointwise ci
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