

Nonparametric regression using smoothing splines

- Smoothing is fitting a smooth curve to data in a scatterplot

- Will focus initially on two variable problems: Y and one X

- Will extend to more than 2 predictors at the end

- Our model:

$$y_i = f(x_i) + \varepsilon_i,$$

where $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ are independent with mean 0

- f is some unknown smooth function

- Stat 301, 587 etc: f has a specified form with unknown parameters
 - f could be linear or nonlinear in the parameters,
 - e.g. $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$
 - functional form always specified

- If f not determined by the subject matter, we may prefer to let the data suggest a functional form

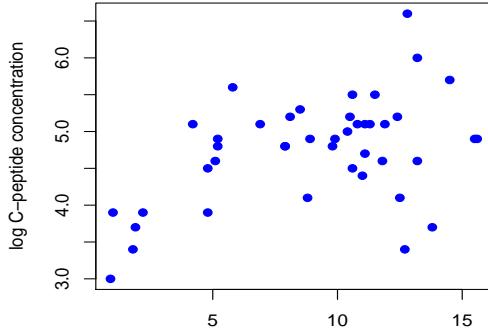
- Why estimate f ?

- can see features of the relationship between X and Y that are obscured by error variation
- summarizes the relationship between X and Y
- provide a diagnostic for a presumed parametric form

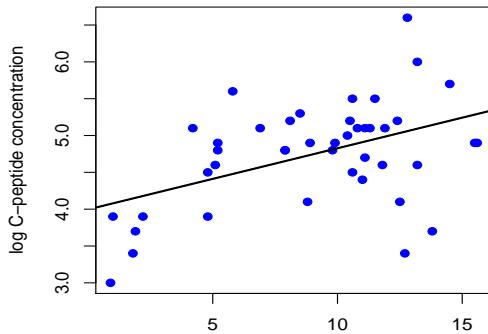
- Example: Diabetes data set in Hastie and Tibshirani's book *Generalized Additive Models*

- Examine relationship between age of diagnosis of diabetes and log of the serum C-peptide concentration

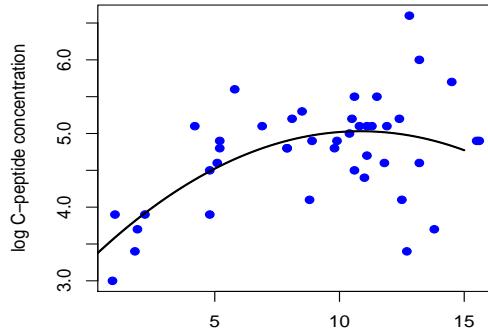
- Here's what happens if we fit increasing orders of polynomial, then fit an estimated f



linear fit

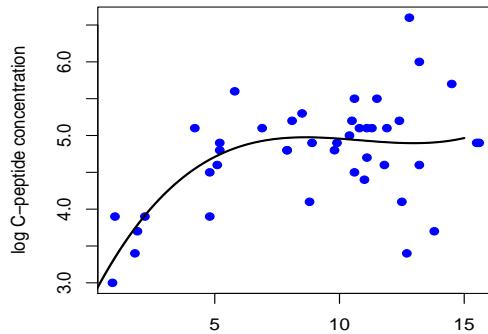


Quadratic fit



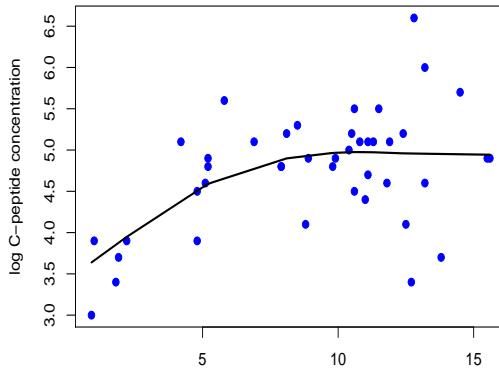
Age at Diagnosis

Cubic fit



Age at Diagnosis

Penalized spline fit



Age

- A slightly different way of thinking about Gauss-Markov Linear models:
 - If we assume that $f(x)$ is linear, then $f(x) = \beta_0 + \beta_1 x$
 - In terms of the Gauss-Markov Linear Model $\mathbf{y} = \mathbf{X}\beta + \epsilon$,

$$\mathbf{X} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \text{ and } \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$$

- The linear model approximates $f(x)$ as a linear combination of two "basis" functions: $b_0(x) = 1$, $b_1(x) = x$,

$$f(x) = \beta_0 b_0(x) + \beta_1 b_1(x)$$

- If we assume that $f(x)$ is quadratic, then $f(x) = \beta_0 + \beta_1 x + \beta_2 x^2$.

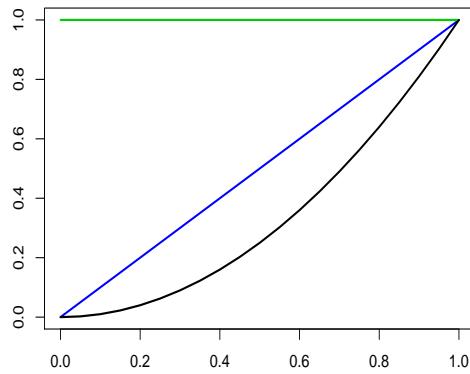
- In terms of the Gauss-Markov Linear Model $\mathbf{y} = \mathbf{x}\beta + \epsilon$,

$$\mathbf{X} = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 \end{bmatrix} \text{ and } \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}$$

- The quadratic model tries to approximate $f(x)$ as a linear combination of three basis functions:

$$b_0(x) = 1, \quad b_1(x) = x, \quad b_2(x) = x^2$$

$$f(x) = \beta_0 b_0(x) + \beta_1 b_1(x) + \beta_2 b_2(x)$$

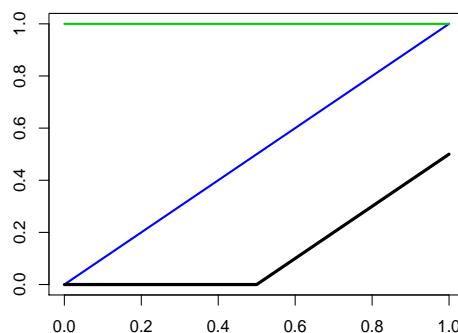


- Now consider replacing $b_2(x) = x^2$ with

$$S_1(x) = (x - k_1)^+ \equiv \begin{cases} 0 & \text{if } x \leq k_1 \\ x - k_1 & \text{if } x > k_1 \end{cases}$$

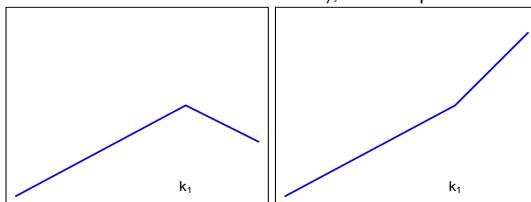
where k_1 is a specified real value.

- $f(x)$ is now approximated by $\beta_0 b_0(x) + \beta_1 b_1(x) + u_1 S_1(x)$, where u_1 (like β_0 and β_1) is an unknown parameter.



- Note that $\beta_0 b_0(x) + \beta_1 b_1(x) + u_1 S_1(x) = \beta_0 + \beta_1 X + u_1(x - k_1)^+$
 $= \begin{cases} \beta_0 + \beta_1 x & \text{if } x \leq k_1 \\ \beta_0 + \beta_1 x + u_1(x - k_1) & \text{if } x > k_1 \end{cases}$
 $= \begin{cases} \beta_0 + \beta_1 x & \text{if } x \leq k_1 \\ \beta_0 - u_1 k_1 + (\beta_1 + u_1)x & \text{if } x > k_1 \end{cases}$

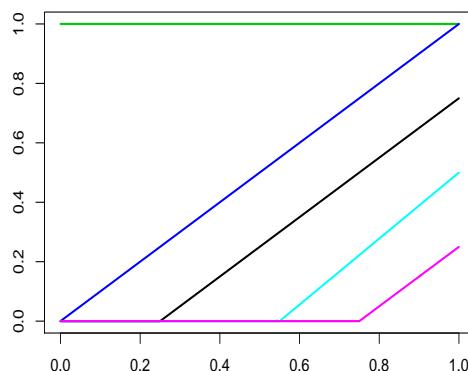
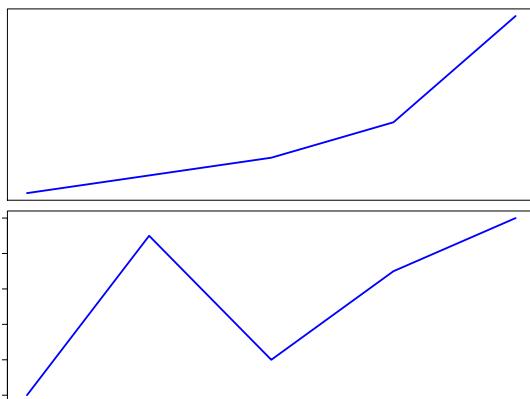
- This is clearly a continuous function (because it is a linear combination of continuous functions), and it is piecewise linear.



- The function $\beta_0 + \beta_1 x + u_1(x - k_1)^+$ is a simple example of a linear spline function.
- The value k_1 is known as a knot.
- As a Gauss-Markov Linear Model, $\mathbf{y} = \mathbf{X}\beta + \epsilon$,

$$\mathbf{X} = \begin{bmatrix} 1 & x_1 & (x_1 - k_1)^+ \\ 1 & x_2 & (x_2 - k_1)^+ \\ \vdots & \vdots & \vdots \\ 1 & x_n & (x_n - k_1)^+ \end{bmatrix} \text{ and } \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ u_1 \end{bmatrix}$$

- We can make our linear spline function more flexible by adding more knots k_1, \dots, k_k so that $f(x)$ is approximated by $\beta_0 + \beta_1 x + \sum_{j=1}^k u_j s_j(x) = \beta_0 + \beta_1 x + \sum_{j=1}^k u_j(x - k_j)^+$



- If we assume $f(x) = \beta_0 + \beta_1 x + \sum_{j=1}^k u_j(x - k_j)^+$, we can write our model as the Gauss-Markov Linear Model $\mathbf{y} = \mathbf{X}\beta + \epsilon$, where

$$\mathbf{X} = \begin{bmatrix} 1 & x_1 & (x_1 - k_1)^+ & (x_1 - k_2)^+ \dots (x_1 - k_k)^+ \\ 1 & x_2 & (x_2 - k_1)^+ & (x_2 - k_2)^+ \dots (x_2 - k_k)^+ \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & (x_n - k_1)^+ & (x_n - k_2)^+ \dots (x_n - k_k)^+ \end{bmatrix}$$

and $\beta = (\beta_0, \beta_1, u_1, u_2, \dots, u_k)'$

- Estimate $\beta = (\beta_0, \beta_1, u_1, u_2, \dots, u_k)'$ by OLS
- But resulting $f(x)$ usually too “wiggly”.
- A “wiggly” curve corresponds to values of u_1, u_2, \dots, u_k far from zero

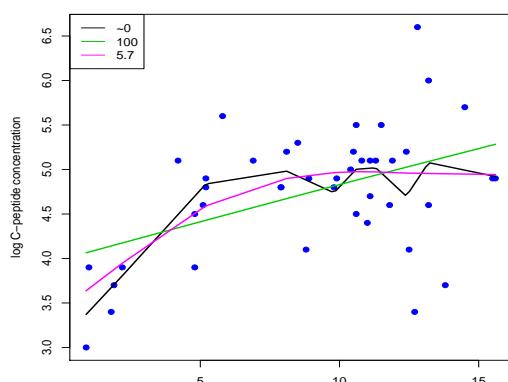
Curve	β_1	u_1	u_2	u_3	$\sum u_i^2$
Smoother	0.4	0.0	0.4	1.6	2.72
Wigglier	3.6	-6.4	4.8	-0.8	64.64

Penalized least squares: Fit + smoothness

- Usually think of fitted curve is an approximation to the true $f(x)$.
- Prefer a smoother (less flexible) estimate of $f(x)$.
- This has u_i coefficients closer to 0
- Want to find coefficients that fit the data while having small u_i .
- Statistical method: penalized least squares
- Minimizes $(\mathbf{y} - \mathbf{X}\beta)'(\mathbf{y} - \mathbf{X}\beta) + \lambda^2 \sum_{j=1}^k u_j^2$
 - Combines fit to data (1st term) and smoothness (2nd term)
 - $\lambda^2 \sum_{j=1}^k u_j^2$ is the penalty for roughness (lack of smoothness).
 - λ^2 is the smoothing parameter.
 - controls the emphasis on fit or on smoothness
- Details at end

Role of smoothing parameter, knots and basis functions

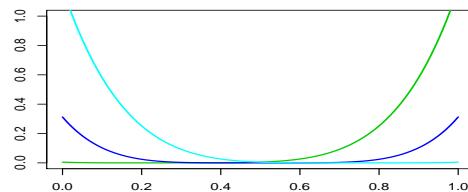
- λ^2 controls how wiggly the curve can be
 - $\lambda^2 \approx 0$, u_i 's can be large \Rightarrow wiggly fit.
 - λ^2 large, all u_i 's $\rightarrow 0 \Rightarrow \beta_0 + \beta_1 X_i$
- knots k_1, k_2, \dots control where the curve bends
 - You choose where and how many
 - In practice, not very important.
 - Better to have too many than too few.
 - If too many knots, some u_i 's will be 0.
- Form of the basis functions
 - linear spline function is continuous
 - but 1st and 2nd derivatives are not; they're undefined at the knots
 - curve "looks" smoother if continuous in 1st and 2nd derivatives
 - cubic regression splines
 - thin plate splines
 - And quite a few others



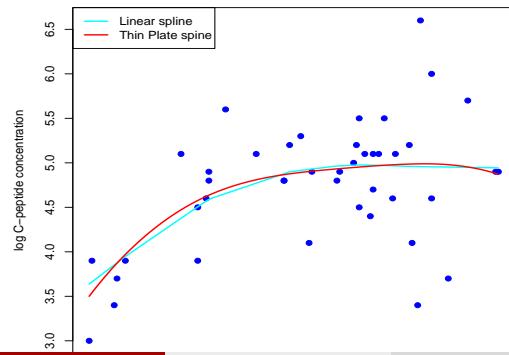
Thin plate splines

- Generalize easily to multiple X 's
- The thin plate spline in concept: quadratic + spline pieces

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \sum_{i=1}^n u_i f(|x - x_i|)$$



Comparison of linear and thin-plate splines



Choosing a smoothing parameter

- How much to smooth?
 - i.e. what λ^2 ?
 - reminder: 0 \Rightarrow no smoothing (linear or quadratic in tps)
 - large \Rightarrow close fit to data points
 - Number of knots much less important
- three approaches commonly used (depending on software)
 - ① Cross validation
 - ② Generalized cross validation
 - ③ Mixed models
- Often determined by software
 - `gam()` in `mgcv` library offers 4 choices: GCV, mixed models (REML), and 2 others

Cross validation

- Same concept as in other uses we've seen
 - Assess how well a model predicts for new observations
 - Find λ^2 that minimizes cv prediction error
 - Exclude an observation, fit spline model with λ^2 , predict exclude observation
 - Minimize sum of squared residuals
 - Requires a **LOT** of computing (each obs, many λ^2)
 - There is an approximation that requires a lot less computing (see details at end)

Other approaches to choosing a smoothing parameter

- Generalized Cross validation
 - Same spirit as CV, different details (see end)
 - Faster to compute; sometimes seems to work better
- Linear mixed effects model
 - Linear spline model is still $Y_i = \beta_0 + \beta_1 X_i + u_1 f(X_i, k_1) + u_2 f(X_i, k_2) + \dots + \varepsilon$
 - Make this a mixed model by making the u_i 's be random effects
 - All $u_i \sim N(0, \sigma^2)$ and independent.
 - $f(X_i, k + j)$ is still each of the J spline basis functions
 - Predictions of Y_i based on this model are identical to those using penalized least squares
 - Benefits of the mixed model approach
 - easy to add spline functions to lots of models
 - Very fast computation

Choosing number of knots

- Still need to choose number of knots (k) and their locations k_1, \dots, k_k
- Ruppert, Wand and Carroll (2003) recommend 20-40 knots maximum, located so that there are roughly 4-5 unique x values between each pair of knots.
- Most software automatically chooses knots using a strategy consistent (roughly) with this recommendation.
- Knot choice is not usually as important as choice of smoothing parameter
 - As long as there are enough knots, a good fit can usually be obtained.
 - Penalization prevents a fit that is too rough even when there are many knots.

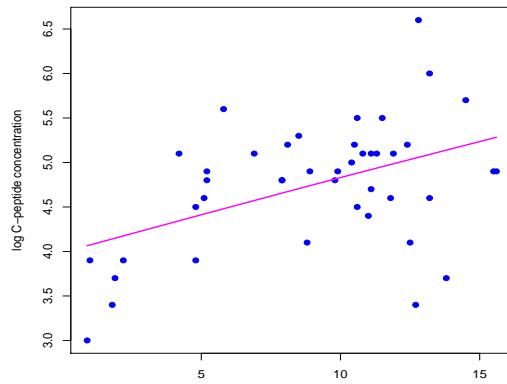
Towards inference with a penalized spline

- If we want to compare models (e.g. $Ey = \beta_0 + \beta_1 x$ vs $Ey = f(x)$), need to know df for penalized spline fit
- Can do this test because
 - $Ey = \beta_0 + \beta_1 x$ is nested in $Ey = f(x)$ fit as a linear spline
 - $Ey = \beta_0 + \beta_1 x + \beta_2 x^2$ is nested in $Ey = f(x)$ fit as a thin plate spline
- If we use a penalized linear spline, how many parameters are we using to estimate the mean function ?
- It may seem like we have $k + 2$ parameters $\beta_0, \beta_1, u_1, u_2, \dots, u_k$.
- But fewer than $k + 2$ because of penalization.
 - Actual number of parameters depends on the smoothing parameter λ^2 .

Model df

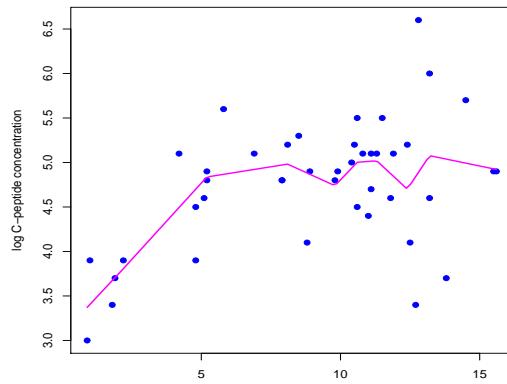
- Model df has two components: the β model and the spline basis functions
- Knowing the total model df tells you how wiggly the spline part is
 - linear spline: $\beta_0 + \beta_1 X_i$, so 1 df for that part of the model
 - Remember, intercept not counted
 - If model df = 1 or 1.1, spline model essentially a straight line
 - If model df = 2, spline model as wiggly as a quadratic
 - If model df = many more, model is very wiggly
- diabetes data: model df = 2.39

df model = 2, df error = 41



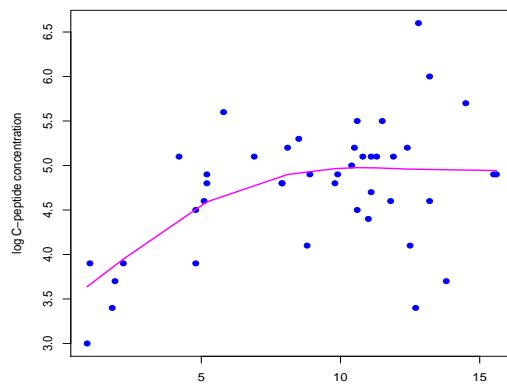
© Dept. Statistics Stat 406 - part 10 Spring 2020 29 / 49

df model = 10, df error = 33



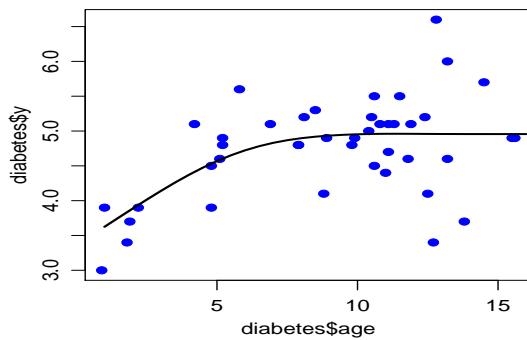
© Dept. Statistics Stat 406 - part 10 Spring 2020 30 / 49

df model = 3.59, df error = 38.76



© Dept. Statistics Stat 406 - part 10 Spring 2020 31 / 49

Diabetes data: cubic spline, 2.39 df



© Dept. Statistics Stat 406 - part 10 Spring 2020 32 / 49

- If we want a confidence or prediction interval around the predicted line, need to know df for error.
- And need to know error df and estimate error variance σ^2 .
- Both can be computed. Lots of details (at end)
- Note: unlike usual models model df + error df $\neq N-1$
- Diabetes data: error df = 39.01
 - Model df + error df = $2.39 + 39.01 = 41.40$ (not $42 = N-1$)

Extensions of penalized splines

- More than one X variable
 - Can fit either as a thin plate spline, $f(X_1, X_2)$
 - or as additive effects: $f_1(X_1) + f_2(X_2)$
 - Can combine parametric and nonparametric forms:

$$\beta_0 + \beta_1 X_1 + f(X_2)$$
- Additive effects models sometimes called Generalized Additive Models (GAM's)
- Penalized splines provide a model for Ey
- Our discussion has only considered $y_i \sim N(Ey_i, \sigma^2)$
- Can combine with GLM ideas, e.g.:
 - $y_i \sim Poisson(f(x_i))$ or $Binomial(f(x_i))$

Details

The next slides collect mathematical and statistical details. These include:

- Finding the penalized LS estimates
- Approximation to cross-validated prediction error
- Generalized CV and mixed model approaches to choosing a smoothing parameter
- Model degrees of freedom
- Estimating σ^2 and error df

Finding the penalized LS estimate of $(\beta_0, \beta_1, u_1, \dots, u_k)'$

- If we let $D = \text{diag}(0, 0, 1, \dots, 1)$ (k terms), then

$$\begin{aligned}
 (\mathbf{y} - \mathbf{x}\beta)'(\mathbf{y} - \mathbf{x}\beta) + \lambda^2 \sum_{j=1}^k u_j^2 &= (\mathbf{y} - \mathbf{x}\beta)'(\mathbf{y} - \mathbf{x}\beta) + \lambda^2 \beta' D \beta \\
 &= \mathbf{y}'\mathbf{y} - 2\mathbf{y}'\mathbf{x}\beta + \beta' \mathbf{x}'\mathbf{x}\beta + \lambda^2 \beta' D \beta \\
 &= \mathbf{y}'\mathbf{y} - 2\mathbf{y}'\mathbf{x}\beta + \beta' (\mathbf{x}'\mathbf{x} + \lambda^2 D) \beta
 \end{aligned}$$

- Set derivatives with respect to β equal to $\mathbf{0}$
- estimating equations: $(\mathbf{x}'\mathbf{x} + \lambda^2 D)\beta \equiv \mathbf{x}'\mathbf{y}$
- solution: $\hat{\beta}_{\lambda^2} = (\mathbf{x}'\mathbf{x} + \lambda^2 D)^{-1} \mathbf{x}'\mathbf{y}$ for any fixed $\lambda^2 \geq 0$
- predicted values: $\hat{y}_{\lambda^2} \equiv \mathbf{x}'\hat{\beta}_{\lambda^2} = \mathbf{x}(\mathbf{x}'\mathbf{x} + \lambda^2 D)^{-1} \mathbf{x}'\mathbf{y}$

Approximation to CV prediction error

- There is a quick approximation to $CV(\lambda^2)$

$$CV(\lambda^2) \approx \sum_{i=1}^n \left\{ \frac{y_i - \hat{f}(x_i; \lambda^2)}{1 - S_{\lambda^2,ii}} \right\}^2$$

, where $S_{\lambda^2,ii}$ is the i^{th} diagonal element of the smoother matrix
 $S_{\lambda^2} = x(x'x + \lambda^2 D)^{-1}x'$.

- Remember that $\hat{y} = x(x'x + \lambda^2 D)^{-1}x'y = S_{\lambda^2}y$
- OLS: $\hat{y} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'y = P_{\mathbf{X}}y$
- The smoother matrix S_{λ^2} is analogous to the "hat" or projection matrix, $P_{\mathbf{X}}$ in a Gauss-Markov model.

Approximation to CV prediction error

- Stat 500: discussed "deleted residuals" $y_i - \hat{y}_{-i}$, where \hat{y}_{-i} is the prediction of y_i when model fit without observation i .
- Can compute with refitting the model N times

$$y_i - \hat{y}_{-i} = \frac{y_i - \hat{y}_i}{1 - h_{ii}},$$

where h_{ii} is the i^{th} diagonal element of the "hat" matrix
 $H = P_{\mathbf{X}} = x(x'x)^{-1}x'$.

- h_{ii} = "leverage" of observation i
- Thus, the approximation $CV(\lambda^2) \approx \sum_{i=1}^n \left\{ \frac{y_i - \hat{f}(x_i; \lambda^2)}{1 - S_{\lambda^2,ii}} \right\}^2$ is
analogous to the PRESS statistic $\sum_{i=1}^n (y_i - \hat{y}_{-i})^2 = \sum_{i=1}^n \left(\frac{y_i - \hat{y}_i}{1 - h_{ii}} \right)^2$
used in multiple regression.

2. Generalized Cross-Validation (GCV)

- GCV is an approximation to CV obtained as follows:

$$GCV(\lambda^2) \equiv \sum_{i=1}^n \left\{ \frac{y_i - \hat{f}(x_i; \lambda^2)}{1 - \frac{1}{n} \text{trace}(S_{\lambda^2})} \right\}^2$$

- Since $\text{trace}(S_{\lambda^2}) = \sum_{i=1}^n S_{\lambda^2,ii}$, GCV is $CV(\lambda^2)$ using the average $\frac{1}{n} \sum_{i=1}^n S_{\lambda^2,ii}$ instead of each specific element
- Used same way: find λ^2 minimizes $GCV(\lambda^2)$
- GCV is not a generalization of CV
- Originally proposed because faster to compute
- In some situations, seems to work better than CV, see Wahba, G. (1990). *Spline Models for Observational Data* for details
- And in very complicated situations, cannot compute H but can estimate $\text{trace}(H)$, so can't use CV but can use GCV.

3. The Linear Mixed Effects Model Approach

- Recall that for our linear spline approach, we assume the model $y_i = \beta_0 + \beta_1 x_i + \sum_{j=1}^k u_j (x_i - k_j)^+ + \epsilon_i$ for $i = 1, \dots, n$; where $\epsilon_1, \dots, \epsilon_n \stackrel{i.i.d.}{\sim} (0, \sigma^2)$
- Suppose we add the following assumptions: $u_1, \dots, u_k \stackrel{i.i.d.}{\sim} N(0, \sigma_u^2)$
independent of $\epsilon_1, \dots, \epsilon_n \stackrel{i.i.d.}{\sim} N(0, \sigma_{\epsilon}^2)$. ($\sigma_u^2 \equiv \sigma^2$)
- Then we may write our model as $\mathbf{y} = \mathbf{x}\beta + \mathbf{Z}\mathbf{u} + \boldsymbol{\epsilon}$, where

$$X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \quad \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} \quad Z = \begin{bmatrix} (x_1 - k_1)^+ & \dots & (x_1 - k_k)^+ \\ (x_2 - k_1)^+ & \dots & (x_2 - k_k)^+ \\ \vdots & & \vdots \\ (x_n - k_1)^+ & \dots & (x_n - k_k)^+ \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_k \end{bmatrix} \boldsymbol{\epsilon} = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{u} \\ \boldsymbol{\epsilon} \end{bmatrix} \sim N \left(\begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \sigma_u^2 I & \mathbf{0} \\ \mathbf{0} & \sigma_e^2 I \end{bmatrix} \right)$$

- This is a linear mixed effects model!

Mixed effects model

- It can be shown that the BLUP of $X\beta + Z\mathbf{u}$ is equal to $w(w'w + \frac{\sigma_e^2}{\sigma_u^2 D})^{-1}w'\mathbf{y}$ where $w = [x, z]$.
- Thus, the BLUP of $X\beta + Z\mathbf{u}$ is equal to $S_{\frac{\sigma_e^2}{\sigma_u^2}}\mathbf{y}$ (Fitted values of linear spline smoother for $\lambda^2 = \frac{\sigma_e^2}{\sigma_u^2}$)
- Thus, we can use either ML or REML to estimate σ_u^2 and σ_e^2 . (Denote estimates by $\hat{\sigma}_u^2$ and $\hat{\sigma}_e^2$)
- Then we can estimate β by
 $\hat{\beta}_{\hat{\Sigma}} = (x'\hat{\Sigma}^{-1}x)^{-1}x'\hat{\Sigma}\mathbf{y}$ and predict \mathbf{u} by
 $\hat{\mathbf{u}}_{\hat{\Sigma}} = \hat{G}Z'\hat{\Sigma}^{-1}(\mathbf{y} - x\hat{\beta}_{\hat{\Sigma}}) = \hat{\sigma}_u^2 Z'\hat{\Sigma}^{-1}(\mathbf{y} - x\hat{\beta}_{\hat{\Sigma}})$ where
 $\hat{\Sigma} = \hat{\sigma}_u^2 ZZ' + \hat{\sigma}_e^2 I$
- The resulting coefficients $\begin{bmatrix} \hat{\beta}_{\hat{\Sigma}} \\ \hat{\mathbf{u}}_{\hat{\Sigma}} \end{bmatrix}$ will be equal to the estimate obtained using penalized least squares with smoothing parameter $\lambda^2 = \frac{\hat{\sigma}_e^2}{\hat{\sigma}_u^2}$

Model df

- However, u_1, u_2, \dots, u_k are not completely free parameters because of penalization.
- The effective number of parameters is lower than $k+2$ and depends on the value of the smoothing parameter λ^2 .
- Recall that our estimates of $\beta_0, \beta_1, u_1, u_2, \dots, u_k$ minimize $\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i - \sum_{j=1}^k u_j (x_i - k_j)^+)^2 + \lambda^2 \sum_{j=1}^k u_j^2$
- A larger λ^2 means less freedom to choose values for u_1, \dots, u_k from 0.
- Thus, the number of effective parameters should decrease as λ^2 increases.
- In the Gauss-Markov framework with no penalization, the number of free parameters used to estimate the mean of $\mathbf{y}(x\beta)$ is $\text{rank}(x) = \text{rank}(P_x) = \text{trace}(P_x)$

Model df

- For a smoother, the smoother matrix S plays the role of P_x .
- For penalized linear splines, the smoother matrix is $S_{\lambda^2} = x(x'x + \lambda^2 D)^{-1}x'$ where

$$X = \begin{bmatrix} 1 & x_1 & (x_1 - k_1)^+ \dots (x_1 - k_k)^+ \\ 1 & x_2 & (x_2 - k_1)^+ \dots (x_2 - k_k)^+ \\ \vdots & \vdots & \vdots \\ 1 & x_n & (x_n - k_1)^+ \dots (x_n - k_k)^+ \end{bmatrix} D = \begin{bmatrix} 0 & & \\ 2 \times 2 & 0 \\ 0 & k \times k \end{bmatrix}$$

- Thus, we define the effective number of parameter (or the degrees of freedom) used when estimating $f(x)$ to be $\text{tr}(S_{\lambda^2}) = \text{tr}[x(x'x + \lambda^2 D)^{-1}x'] = \text{tr}[(x'x + \lambda^2 D)^{-1}x'x]$

- Recall that our basic model is $y_i = f(x_i) + \epsilon_i$ ($i = 1, \dots, n$) where $\epsilon_1, \dots, \epsilon_n \stackrel{i.i.d.}{\sim} (0, \sigma^2)$.
- How should we estimate σ^2 ?
- A natural estimator would be $MSE \equiv \frac{\sum_{i=1}^n \{y_i - \hat{f}(x_i; \lambda^2)\}^2}{df_{ERROR}}$
- df_{ERROR} is usually defined to be $n - 2\text{tr}(S_{\lambda^2}) + \text{tr}(S_{\lambda^2} S'_{\lambda^2})$.
- To see where this comes from, recall that for \mathbf{w} random and A fixed $E(\mathbf{w}' A \mathbf{w}) = E(\mathbf{w})' A E(\mathbf{w}) + \text{tr}(A \text{Var}(\mathbf{w}))$

$$\text{Let } \mathbf{f} = \begin{bmatrix} f(x_1) \\ f(x_2) \\ \vdots \\ f(x_n) \end{bmatrix} \text{ and } \hat{\mathbf{f}}_{\lambda^2} = \begin{bmatrix} \hat{f}(x_1; \lambda^2) \\ \hat{f}(x_2; \lambda^2) \\ \vdots \\ \hat{f}(x_n; \lambda^2) \end{bmatrix} = S_{\lambda^2} \mathbf{y}$$

- Then, $E[\sum_{i=1}^n \{y_i - \hat{f}(x_i; \lambda^2)\}^2]$

$$\begin{aligned}
 &= E[(\mathbf{y} - \hat{\mathbf{f}})'(\mathbf{y} - \hat{\mathbf{f}})] \\
 &= E[\|\mathbf{y} - \hat{\mathbf{f}}\|^2] = E[\|(I - S_{\lambda^2})\mathbf{y}\|^2] \\
 &= E[\mathbf{y}'(I - S_{\lambda^2})'(I - S_{\lambda^2})\mathbf{y}] \\
 &= \mathbf{f}'(I - S_{\lambda^2})'(I - S_{\lambda^2})\mathbf{f} + \text{tr}[(I - S_{\lambda^2})'(I - S_{\lambda^2})\sigma^2 I] \\
 &= \|(I - S_{\lambda^2})\mathbf{f}\|^2 + \sigma^2 \text{tr}[I - S'_{\lambda^2} - S_{\lambda^2} + S'_{\lambda^2} S'_{\lambda^2}] \\
 &= \|\mathbf{f} - S_{\lambda^2} \mathbf{f}\|^2 + \sigma^2 [\text{tr}(I) - 2\text{tr}(S_{\lambda^2}) + \text{tr}(S'_{\lambda^2} S_{\lambda^2})] \\
 &\approx \sigma^2 [n - 2\text{tr}(S_{\lambda^2}) + \text{tr}(S'_{\lambda^2} S_{\lambda^2})]
 \end{aligned}$$

- Thus, if we define $df_{ERROR} = n - 2\text{tr}(S_{\lambda^2}) + \text{tr}(S'_{\lambda^2} S_{\lambda^2})$, $E(MSE) \approx \sigma^2$

- The Standard Error of $\hat{f}(x; \sigma^2)$:

$$\begin{aligned}
 \hat{f}(x; \lambda^2) &= \hat{\beta}_0 + \hat{\beta}_1 x + \sum_{j=1}^k \hat{u}_j (x - k_j)^+ \\
 &= [1, x, (x - k_1)^+, \dots, (x - k_k)^+] \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \hat{u}_1 \\ \vdots \\ \hat{u}_k \end{bmatrix} \\
 &= [1, x, (x - k_1)^+, \dots, (x - k_k)^+] (x' x + \lambda^2 D)^{-1} x' \mathbf{y} = \mathbf{S}_{\lambda^2}' \mathbf{y}
 \end{aligned}$$

- If λ^2 and the knots, k_i , are fixed and not chosen as a function of the data, \mathbf{C} is just a fixed (nonrandom) vector.

- Thus, $\text{Var}[\hat{f}(x; \lambda^2)] = \text{Var}(\mathbf{S}_{\lambda^2}' \mathbf{y}) = \mathbf{S}_{\lambda^2}' \sigma^2 I \mathbf{S}_{\lambda^2} = \sigma^2 \mathbf{S}_{\lambda^2}' \mathbf{S}_{\lambda^2}$
- It follows that the standard error for $\hat{f}(x; \lambda^2)$ is $SE[\hat{f}(x; \lambda^2)] = \sqrt{MSE \mathbf{S}_{\lambda^2}' \mathbf{S}_{\lambda^2}}$
- If λ^2 and/or the knots are selected based on the data (as is usually the case), $\sqrt{MSE \mathbf{S}_{\lambda^2}' \mathbf{S}_{\lambda^2}}$ is still used as an approximate standard error.
- However, that approximate standard error may be smaller than it should be because it does not account for variation in the \mathbf{S}_{λ^2} vector itself.
- Ruppert, Wand, and Carroll (2003) suggest other strategies that use the linear mixed effects model framework.
- Calculate pointwise $1 - \alpha$ confidence intervals for $\hat{f}(x_i)$ by $t_{1-\alpha/2, df_{\text{fe}}} \sqrt{\text{Var}[\hat{f}(x; \lambda^2)]}$, where df_{fe} is the df_{ERROR} defined a few pages ago

Linear spline fit with 95% pointwise ci

