
Nonparametric regression using smoothing splines

Smoothing is fitting a smooth curve to data in a scatterplot
Will focus initially on two variable problems: Y and one X
Will extend to more than 2 predictors at the end
Our model:

yi = f (xi) + εi ,

where ε1, ε1, . . . εn are independent with mean 0
f is some unknown smooth function
Stat 301, 587 etc: f has a specified form with unknown
parameters

f could be linear or nonlinear in the parameters,
e.g. Yi = β0 + β1 Xi + εi
functional form always specified

If f not determined by the subject matter, we may prefer to let the
data suggest a functional form
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Why estimate f?
can see features of the relationship between X and Y that are
obscured by error variation
summarizes the relationship between X and Y
provide a diagnostic for a presumed parametric form

Example: Diabetes data set in Hastie and Tibshirani’s book
Generalized Additive Models
Examine relationship between age of diagnosis of diabetes and
log of the serum C-peptide concentration
Here’s what happens if we fit increasing orders of polynomial, then
fit an estimated f
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A slightly different way of thinking about Gauss-Markov Linear
models:

If we assume that f(x) is linear, then f (x) = β0 + β1x
In terms of the Gauss-Markov Linear Model y = Xβ + ε,

X =


1 x1
1 x2
...

...
1 xn

 and β =

[
β0
β1

]

The linear model approximates f (x) as a linear combination of two
”basis” functions: b0(x) = 1, b1(x) = x ,

f (x) = β0b0(x) + β1b1(x)
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If we assume that f(x) is quadratic, then f (x) = β0 + β1x + β2x2.
In terms of the Gauss-Markov Linear Model y = xβ + ε,

X =


1 x1 x2

1
1 x2 x2

2
...

...
...

1 xn x2
n

 and β =

 β0
β1
β2


The quadratic model tries to approximate f(x) as a linear
combination of three basis functions:
b0(x) = 1, b1(x) = x , b2(x) = x2

f (x) = β0b0(x) + β1b1(x) + β2b2(x)
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Now consider replacing b2(x) = x2 with

S1(x) = (x − k1)
+ ≡

{
0 if x ≤ k1
x − k1 if x > k1

where k1 is a specified real value.
f (x) is now approximated by β0b0(x) + β1b1(x) + u1S1(x), where
u1 (like β0 amd β1) is an unknown parameter.
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Note that β0b0(x) + β1b1(x) + u1S1(x) = β0 + β1X + u1(x − k1)
+

=

{
β0 + β1x if x ≤ k1
β0 + β1x + u1(x − k1) if x > k1

=

{
β0 + β1x if x ≤ k1
β0 − u1k1 + (β1 + u1)x if x > k1

This is clearly a continuous function (because it is a linear
combination of continuous functions), and it is piecewise linear.

k1 k1
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The function β0 + β1x + u1(x − k1)
+ is a simple example of a

linear spline function.
The value k1 is known as a knot.
As a Gauss-Markov Linear Model, y = Xβ + ε,

X =


1 x1 (x1 − k1)

+

1 x2 (x2 − k1)
+

...
...

...
1 xn (xn − k1)

+

 and β =

 β0
β1
u1


We can make our linear spline function more flexible by adding
more knots k1, ..., kk so that f(x) is approximated by
β0 + β1x +

∑k
j=1 ujsj(x) = β0 + β1x +

∑k
j=1 uj(x − kj)

+
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If we assume f (x) = β0 + β1x +
∑k

j=1 uj(x − kj)
+, we can write

our model as the Gauss-Markov Linear Model y = Xβ + ε, where

X =


1 x1 (x1 − k1)

+ (x1 − k2)
+...(x1 − kk )

+

1 x2 (x2 − k1)
+ (x2 − k2)

+...(x2 − kk )
+

...
...

...
...

...
1 xn (xn − k1)

+ (xn − k2)
+...(xn − kk )

+


and β = (β0,β1,u1,u2, ...,uk )

′

Estimate β = (β0,β1,u1,u2, ...,uk )
′ by OLS

But resulting f (x) usually too “wiggly” .
A “wiggly” curve corresponds to values of u1,u2, . . .uk far from
zero

Curve β1 u1 u2 u3
∑

u2
i

Smoother 0.4 0.0 0.4 1.6 2.72
Wigglier 3.6 -6.4 4.8 -0.8 64.64
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Penalized least squares: Fit + smoothness

Usually think of fitted curve is an approximation to the true f (x).
Prefer a smoother (less flexible) estimate of f (x).
This has ui coefficients closer to 0
Want to find coefficients that fit the data while having small ui .
Statistical method: penalized least squares

Minimizes (y − xβ)′(y − xβ) + λ2∑k
j=1 u2

j
Combines fit to data (1st term) and smoothness (2nd term)
λ2 ∑k

j=1 u2
j is the penalty for roughness (lack of smoothness).

λ2 is the smoothing parameter.
controls the emphasis on fit or on smoothness

Details at end
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Role of smoothing parameter, knots and basis
functions

λ2 controls how wiggly the curve can be
λ2 ≈ 0, ui ’s can be large⇒ wiggly fit.
λ2 large, all ui ’s→ 0⇒ β0 + β1Xi

knots k1, k2, · · · control where the curve bends
You choose where and how many
In practice, not very important.
Better to have too many than too few.
If too many knots, some ui ’s will be 0.

Form of the basis functions
linear spline function is continuous
but 1st and 2nd derivatives are not; they’re undefined at the knots
curve “looks” smoother if continuous in 1st and 2nd derivatives

cubic regression splines
thin plate splines
And quite a few others
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Thin plate splines

Generalize easily to multiple X ’s
The thin plate spline in concept: quadratic + spline pieces

f (x) = β0 + β1x + β2x2 +
n∑

i=1

uj f (|x − xi |)
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Comparison of linear and thin-plate splines
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Choosing a smoothing parameter

How much to smooth?
i.e. what λ2?

reminder: 0 ⇒ no smoothing (linear or quadratic in tps)
large ⇒ close fit to data points

Number of knots much less important
three approaches commonly used (depending on software)

1 Cross validation
2 Generalized cross validation
3 Mixed models

Often determined by software
gam() in mgcv library offers 4 choices: GCV, mixed models
(REML), and 2 others
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Cross validation

Same concept as in other uses we’ve seen
Assess how well a model predicts for new observations
Find λ2 that minimizes cv prediction error
Exclude an observation, fit spline model with λ2, predict exclude
observation
Minimize sum of squared residuals
Requires a LOT of computing (each obs, many λ2)
There is an approximation that requires a lot less computing (see
details at end)
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Other approaches to choosing a smoothing parameter

Generalized Cross validation
Same spirit as CV, different details (see end)
Faster to compute; sometimes seems to work better

Linear mixed effects model
Linear spline model is still
Yi = β0 + β1Xi + u1f (Xi , k1) + u2f (Xi , k2) + · · ·+ ε
Make this a mixed model by making the ui ’s be random effects
All ui ∼ N(0, σ2) and independent.
f (Xi , k + j) is still each of the J spline basis functions
Predictions of Yi based on this model are identical to those using
penalized least squares
Benefits of the mixed model approach

easy to add spline functions to lots of models
Very fast computation
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Choosing number of knots

Still need to choose number of knots (k) and their locations
k1, ..., kk

Ruppert, Wand and Carroll (2003) recommend 20-40 knots
maximum, located so that there are roughly 4-5 unique x values
between each pair of knots.
Most software automatically chooses knots using a strategy
consistent (roughly) with this recommendation.
Knot choice is not usually as important as choice of smoothing
parameter

As long as there are enough knots, a good fit can usually be
obtained.
Penalization prevents a fit that is too rough even when there are
many knots.
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Towards inference with a penalized spline

If we want to compare models (e.g. Ey = β0 + β1x vs Ey = f (x)),
need to know df for penalized spline fit
Can do this test because

Ey = β0 + β1x is nested in Ey = f (x) fit as a linear spline
Ey = β0 + β1x + β2x2 is nested in Ey = f (x) fit as a thin plate spline

If we use a penalized linear spline, how many parameters are we
using to estimate the mean function ?
It may seem like we have k + 2 parameters β0,β1,u1,u2, ...,uk .
But fewer than k + 2 because of penalization.

Actual number of parameters depends on the smoothing parameter
λ2.
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Model df

Model df has two components: the β model and the spline basis
functions
Knowing the total model df tells you how wiggly the spline part is

linear spline: β0 + β1Xi , so 1 df for that part of the model
Remember, intercept not counted

If model df = 1 or 1.1, spline model essentially a straight line
If model df = 2, spline model as wiggly as a quadratic
If model df = many more, model is very wiggly

diabetes data: model df = 2.39
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Diabetes data: cubic spline, 2.39 df
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Towards inference with a penalized spline

If we want a confidence or prediction interval around the predicted
line, need to know df for error.
And need to know error df and estimate error variance σ2.
Both can be computed. Lots of details (at end)
Note: unlike usual models model df + error df 6= N-1
Diabetes data: error df = 39.01

Model df + error df = 2.39 + 39.01 = 41.40 (not 42 = N-1)
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Extensions of penalized splines

More than one X variable
Can fit either as a thin plate spline, f (X1,X2)
or as additive effects: f1(X1) + f2(X2)
Can combine parametric and nonparametric forms:
β0 + β1X1 + f (X2)

Additive effects models sometimes called
Generalized Additive Models (GAM’s)
Penalized splines provide a model for Ey
Our discussion has only considered yi ∼ N(Eyi, σ

2)

Can combine with GLM ideas, e.g.:
yi ∼ Poisson(f (xi)) or Binomial(f (xi))
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Details

The next slides collect mathematical and statistical details. These
include:

Finding the penalized LS estimates
Approximation to cross-validated prediction error
Generalized CV and mixed model approaches to choosing a
smoothing parameter
Model degrees of freedom
Estimating σ2 and error df
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Finding the penalized LS estimate of (β0,β1,u1, ...,uk)
′

If we let D = diag(0,0,1,...,1) (k terms), then

(y − xβ)′(y − xβ) + λ2
k∑

j=1

u2
j = (y − xβ)′(y − xβ) + λ2β′Dβ

= y ′y − 2y ′xβ + β′x ′xβ + λ2β′Dβ

= y ′y − 2y ′xβ + β′(x ′x + λ2D)β

Set derivatives with respect to β equal to 0
estimating equations: (x ′x + λ2D)β ≡ x ′y
solution: β̂λ2 = (x ′x + λ2D)−1x ′y for any fixed λ2 ≥ 0
predicted values: ŷλ2 ≡ xβ̂λ2 = x(x ′x + λ2D)−1x ′y
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Approximation to CV prediction error

There is a quick approximation to CV (λ2)

CV (λ2) ≈
n∑

i=1

{
yi − f̂ (xi ;λ

2)

1− Sλ2,ii

}2

, where Sλ2,ii is the i th diagonal element of the smoother matrix
Sλ2 = x(x ′x + λ2D)−1x ′.
Remember that ŷ = x(x ′x + λ2D)−1x ′y = Sλ2y
OLS: ŷ = X (X ′X )−X ′y = PX y
The smoother matrix Sλ2 is analogous to the “hat” or projection
matrix, PX in a Gauss-Markov model.

c© Dept. Statistics Stat 406 - part 10 Spring 2020 37 / 49

Approximation to CV prediction error

Stat 500: discussed ”deleted residuals” yi − ŷ−i , where ŷ−i is the
prediction of yi when model fit without observation i .
Can compute with refitting the model N times

yi − ŷ−i =
yi − ŷi

1− hii
,

where hii is the i th diagonal element of the ”hat” matrix
H = Px = x(x ′x)−x ′.
hii = ”leverage” of observation i

Thus, the approximation CV (λ2) ≈
∑n

i=1

{
yi−f̂ (xi ;λ

2)
1−S

λ2,ii

}2
is

analogous to the PRESS statistic
∑n

i=1(yi − ŷ−i)
2 =

∑n
i=1(

yi−ŷi
1−hii

)2

used in multiple regression.
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2. Generalized Cross-Validation (GCV)

GCV is an approximation to CV obtained as follows:

GCV (λ2) ≡
n∑

i=1

{
yi − f̂ (xi ;λ

2)

1− 1
n trace(Sλ2)

}2

Since trace(Sλ2) =
∑n

i=1 Sλ2,ii , GCV is CV (λ2) using the average
1
n
∑n

i=1 Sλ2,ii instead of each specific element

Used same way: find λ2 minimizes GCV (λ2)

GCV is not a generalization of CV
Originally proposed because faster to compute
In some situations, seems to work better than CV, see Wahba, G.
(1990). Spline Models for Observational Data for details
And in very complicated situations, cannot compute H but can
estimate trace(H), so can’t use CV but can use GCV.
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3. The Linear Mixed Effects Model Approach

Recall that for our linear spline approach, we assume the model
yi = β0 + β1xi +

∑k
j=1 uj(xi − kj)

+ + εi for i = 1, ...,n; where

e1, ...,en
i.i.d .∼ (0, σ2)

Suppose we add the following assumptions: u1, ...,uk
i.i.d .∼ N(0, σ2

u)

independent of e1, ...,en
i.i.d .∼ N(0, σ2

e).(σ
2
e ≡ σ2)

Then we may write our model as y = xβ + Zu + ε, where

X =


1 x1
1 x2
...

...
1 xn

β =

[
β0
β1

]
Z =


(x1 − k1)

+ . . . (x1 − kk )
+

(x2 − k1)
+ . . . (x2 − kk )

+

...
...

(xn − k1)
+ . . . (xn − kk )

+


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Mixed effects model

y =


y1
y2
...

yn

u =


u1
u2
...

uk

 ε =


e1
e2
...

en


[

u
ε

]
∼ N

([
0
0

]
,

[
σ2

uI 0
0 σ2

uI

])

This is a linear mixed effects model!
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Mixed effects model

It can be shown that the BLUP of Xβ + Zu is equal to
w(w ′w + σ2

e
σ2

uD )
−1w ′y where w = [x , z].

Thus, the BLUP of Xβ + Zu is equal to
Sσ2

e
σ2

u

y = (Fitted values of linear spline smoother for λ2 = σ2
e
σ2

u
))

Thus, we can use either ML or REML to estimate σ2
u and σ2

e.
(Denote estimates by σ̂2

u and σ̂2
e.)

Then we can estimate β by
β̂Σ̂ = (x ′Σ̂

−1
x)−1x ′Σ̂y and predict u by

ûΣ̂ = ĜZ ′Σ̂
−1

(y − xβ̂Σ̂) = σ̂2
uZ ′Σ̂

−1
(y − xβ̂Σ̂) where

Σ̂ = σ̂2
uZZ ′ + σ̂2

eI

The resulting coefficients
[
β̂Σ̂
ûΣ̂

]
will be equal to the estimate

obtained using penalized least squares with smoothing parameter
λ2 = σ̂2

e
σ̂2
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Model df

However, u1,u2, ...,uk are not completely free parameters
because of penalization.
The effective number of parameters is lower than k+2 and
depends on the value of the smoothing parameter λ2.
Recall that our estimates of β0,β1,u1,u2, ...,uk minimize∑n

i=1(yi − β0 − β1xi −
∑k

j=1 uj(xi − kj)
+)2 + λ2∑k

j=1 u2
j

A larger λ2 means less freedom to choose values for u1, ...,uk for
from 0.
Thus, the number of effective parameters should decrease as λ2

increases.
In the Gauss-Markov framework with no penalization, the number
of free parameters used to estimate the mean of y(xβ) is
rank(x) = rank(Px) = trace(Px)
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Model df

For a smoother, the smoother matrix S plays the role of Px .
For penalized linear splines, the smoother matrix is
Sλ2 = x(x ′x + λ2D)−1x ′ where

X =



1 x1 (x1 − k1)
+...(x1 − kk )

+

1 x2 (x2 − k1)
+...(x2 − kk )

+

. . .

. . .

. . .
1 xn (xn − k1)

+...(xn − kk )
+

 D =

 0
2× 2 0

0
I

k × k



Thus, we define the effective number of parameter (or the degrees
of freedom) used when estimating f(x) to be
tr(Sλ2) = tr [x(x ′x + λ2D)−1x ′] = tr [(x ′x + λ2D)−1x ′x ]
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Recall that our basic model is yi = f (xi) + εi (i = 1, ...,n) where
e1, ...,en

i.i.d .∼ (0, σ2).
How should we estimate σ2 ?

A natural estimator would be MSE ≡
∑n

i=1{yi−f̂ (xi ,λ
2)}2

dfERROR

dfERROR is usually defined to be n − 2tr(Sλ2) + tr(Sλ2S′
λ2).

To see where this comes from, recall that for w random and A
fixed E(w ′Aw) = E(w)′AE(w) + tr(AVar(w))

Let f =


f (x1)
f (x2)

...
f (xn)

 and f̂ λ2 =


f̂ (x1;λ

2)

f̂ (x2;λ
2)

...
f̂ (xn;λ

2)

 = Sλ2y
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Then, E [
∑n

i=1

{
yi − f̂ (xi ;λ

2)
}2

]

= E [(y − f̂ )′(y − f̂ )]
= E [||y − f̂ ||2] = E [||(I − Sλ2)y ||2]
= E [y ′(I − Sλ2)′(I − Sλ2)y ]
= f ′(I − Sλ2)′(I − Sλ2)f + tr[(I − Sλ2)′(I − Sλ2)σ2I]
= ||(I − Sλ2)f ||2 + σ2tr[I − S′λ2 − Sλ2 + S′λ2S′λ2 ]

= ||f − Sλ2f ||2 + σ2[tr(I)− 2tr(Sλ2) + tr(S′λ2Sλ2)]

≈ σ2[n − 2tr(Sλ2) + tr(S′λ2Sλ2)]

Thus, if we define
dfERROR = n − 2tr(Sλ2) + tr(S′

λ2Sλ2),E(MSE) ≈ σ2
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The Standard Error of f̂ (x ;σ2):

f̂ (x ;λ2) = β̂o + β̂1x +
∑k

j=1 ûj(x − kj)
+

= [1, x , (x − k1)
+, ..., (x − kk )

+]


β̂0
β̂1
û1
...

ûk


= [1, x , (x − k1)

+, ..., (x − kk )
+](x ′x + λ2D)−1x ′y = Sλ2

′y

If λ2 and the knots, ki , are fixed and not chosen as a function of
the data, C is just a fixed (nonrandom) vector.
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Thus, Var [f̂ (x ;λ2)] = Var(Sλ2
′y) = Sλ2

′σ2ISλ2 = σ2Sλ2
′Sλ2

It follows that the standard error for f̂ (x ;λ2) is
SE [f̂ (x ;λ2)] =

√
MSE Sλ2

′Sλ2

If λ2 and/or the knots are selected based on the data (as is usually
the case),

√
MSE Sλ2

′Sλ2 is still used as an approximate
standard error.
However, that approximate standard error may be smaller than it
should be because it does not account for variation in the Sλ2

vector itself
Ruppert, Wand, and Carroll (2003) suggest other strategies that
use the linear mixed effects model framework.
Calculate pointwise 1− α confidence intervals for f̂ (xi) by

t1−α/2,dfe

√
Var [f̂ (x ;λ2)],

where dfe is the dfERROR defined a few pages ago
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Linear spline fit with 95% pointwise ci
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